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Optimality of the basic colour categories
for classification

Lewis D. Griffin†

Department of Computer Science, University College, London, UK

Categorization of colour has been widely studied as a window into human language and
cognition, and quite separately has been used pragmatically in image-database retrieval
systems. This suggests the hypothesis that the best category system for pragmatic purposes
coincides with human categories (i.e. the basic colours). We have tested this hypothesis by
assessing the performance of different category systems in a machine-vision task. The task
was the identification of the odd-one-out from triples of images obtained using a web-based
image-search service. In each triple, two of the images had been retrieved using the same
search term, the other a different term. The terms were simple concrete nouns. The results
were as follows: (i) the odd-one-out task can be performed better than chance using colour
alone; (ii) basic colour categorization performs better than random systems of categories; (iii)
a category system that performs better than the basic colours could not be found; and (iv) it is
not just the general layout of the basic colours that is important, but also the detail. We
conclude that (i) the results support the plausibility of an explanation for the basic colours as
a result of a pressure-to-optimality and (ii) the basic colours are good categories for machine
vision image-retrieval systems.

Keywords: colour histograms; image retrieval; colour quantization; basic colour terms
1. INTRODUCTION

The question of why the continuously variable quality
of colour is linguistically segregated into the categories
of the basic colours (red, blue, etc.) has been studied by
anthropologists, linguistics and psychologists for 50C
years. Recently, researchers in machine vision have also
considered colour categorization; not for communi-
cation but to facilitate retrieval from image databases.
We have investigated whether these two fields of study
have an overlap, by assessing whether optimal cat-
egories for machine vision agree with human linguistic
categories. Our results are consistent with this agree-
ment. Thus, the contribution that we hope to make to
the debate on the origin and nature of human colour
categories, is to increase the plausibility of a pressure-
to-optimality explanation. In this introduction we
review work on colour categorization by human- and
machine-vision.
1.1. Nature of the basic colours

Although the quality space Gärdenfors (2000) of
colours form a continuous manifold (Riemann 1854),
superficially free of landmarks and subdivisions, human
language contains colour words that reference particu-
lar colours or regions of colour. These colours’ names
vary in status; typically there are a special few that
(i) are not defined primarily by reference to others,
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(unlike, for example, ‘yellowish-green’) and (ii) have
unrestricted applicability (unlike, for example,
‘blond’). Such names are said to be ‘basic colour
terms’ (BCTs), and their referents are ‘basic colours’.
Since being proposed, the criteria for ‘basic-ness’ have
been refined beyond the simple statements above and
added to (Berlin & Kay 1969), but difficult cases still
arise (Paramei 2005). However, interest in basic-ness
does not primarily revolve around asking which or why
some terms are basic, rather the focus is on whether
and why the basic colours of different languages are
the same.

An extreme position that can be taken on these
questions is ‘linguistic relativism’ which maintains that
the basic-ness or not of colours are facts that are
grounded completely in language, and as such should be
expected to vary between cultures dependent on local
concerns and idiosyncratic history. At the other end of
a spectrum of positions is ‘semantic universalism’ which
holds that the basic colours are widely agreed upon
across cultures, so simple and correct translation is
possible. This debate, now in its fifth decade, is often
characterized as a battle (Brown 1991; Kay 1999;
Saunders 2000) with both sides sometimes suspecting
the other of a more substantial agenda than settling a
question in colour science.

Central to the debate is Berlin & Kay’s landmark
study (Berlin & Kay 1969) of colour words in 20
languages. On the basis of that study they claimed that
the ‘basic color terms of any given language are always
drawn’ from a universal inventory of 11: black, grey,
J. R. Soc. Interface (2006) 3, 71–85
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Figure 1. This refinement of a previously published diagram
(Griffin 2001), shows the psychological structure of the 11
basic colours.
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white, red, orange, yellow, green, blue, purple, pink and
brown (see figure 1). These 11 colours are now often
referred to as the basic colours.

Berlin and Kay’s thesis has been challenged on
several grounds, including the following.

(i) Criticism of the methodology used (Lucy 1997;
Saunders & van Brakel 1997; Roberson et al.
2000).

(ii) Identification of counter-examples in non-
industrialized societies. For example, the
language of the Berinmo, a Melanesian people,
has only five basic colour categories, but two
of them—‘nol’ and ‘wor’—have a shared
boundary that lies firmly within the English
‘green’ region (Davidoff et al. 1999; Roberson
et al. 2000).

(iii) Identification of counter-examples in industri-
alized societies. For example, the French term
‘pourpre’ does not include violet colours as
the English term ‘purple’ does (Schirillo
2001), and Russian has arguably an additional
BCTs for light blues (Paramei 2005).

(iv) Small but significant inter-cultural variation
in the colour chosen as the most pure
exemplar of a category, even between cultures
with superficially the same system of cat-
egories (Webster et al. 2000; Lin et al. 2001).

However, despite these evidential challenges the
findings of the recently completedWorld Colour Survey
of 110 languages broadly support the thesis that there is
a strong tendency towards BCTs with similar referents
to the Berlin and Kay 11 BCTs Kay &Regier 2003; Kay
et al. 2005). It remains to be seen whether the improved
methodology of the World Colour Survey will answer
all the criticisms levelled against the original Berlin and
Kay study.
J. R. Soc. Interface (2006)
1.2. Explanations of the basic colours

Assuming that one accepts the evidence for inter-
cultural consensus on which colours are basic, then one
must accept that some part of the explanation of this
must reside in a universally accessible locus. Shared
neurophysiology, language, ecological optics and visual
ecology have all been suggested and we review these
below. The aim of this review is to convey the types of
explanations that have been proposed, rather than to
enumerate only those proposed explanations, which
have not yet been disproved. For example, the hypoth-
esis that the BCTs might be explicable in terms of cone-
opponent channels, although an historically important
hypothesis, has been undermined by studies (Webster &
Mollon 1994; Webster et al. 2000; Kuehni 2004) that
have shown that some unique hues (those judged to be
pure yellow, green or blue) do not correspond to cone-
opponent axes, though it is possible that they corre-
spond to recently discovered non-opponent coding
mechanisms (D’Zmura & Knoblauch 1998).

Neurophysiological explanations tie the basic colours
to the joint measurement span of the cone spectral-
sensitivity functions (Griffin 2001; Buchsbaum & Bloch
2002), to some later processing stage such as opponent
channels (Hering 1920; Hurvich & Jameson 1957; Kay
& Maffi 1999), or to dedicated neural mechanisms
(Steels & Belpaeme in press). Neurophysiology may
also limit what categories are possible, for example we
may lack cognitive structures capable of representing
disconnected or non-convex regions of colour space
(Gärdenfors 2000).

Explanations based on shared language appeal to
factors such as: limitations of some language-acquiring
brain module (Dowman 2002), effects of the process of
achieving consensus on semantics (Steels & Belpaeme in
press), and advantages of agreement despite inter-
individual variations in colour vision (Jameson in press).

Explanations from ecological optics (Gibson 1979)
consider how common physical processes affect colour,
and what invariants exist despite these processes.
Examples are: categories being shaped so that they
exploit that neither shadowing nor highlights alter the
hue of reflected light; and categories being such that
they achieve reasonable stability despite variations in
illuminant (D. Bimler 2004, personal communication.

In explanations from visual ecology, the colour
statistics of the environment are taken into account.
For example, categories could correspond to clusters of
naturally occurring colours (Yendrikhovskij 2001).
Another possibility is that categories are particular
effective for certain types of interaction with the world,
such as search, identification, recognition, discrimi-
nation or classification (Roberson 2005). Effectiveness
for classification ties in well to a recent suggestion about
psychological categories in general: good systems of
categories are those that effectively support induction
(Ellison 2001). In the context of colour, the argument
would go like this. A ‘green’ category is useful as it
allows inferences like the following: the majority of
‘green’ things that I have seen have been plants,
therefore, this ‘green’ thing is probably a plant. If
instead of a ‘green’ category one had ‘turquoise’ and

http://rsif.royalsocietypublishing.org/
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Figure 2. Shows the use of ‘Google Image’ to create the test data. (a) The search term ‘crocodile’ has been used. (b) The central
quadrant of each image is then analysed to produce (c) a coarse-binned RGB histogram. The top row of (c) shows the 43 cells of
the quantization of RGB that we use; the bottom row of (c) is laid out in the same manner, but shows the histogram, with
intensity coding for frequency. (Image in (a) reproduced courtesy of Google Inc. Googlee is a trademark of Google Inc.)

49% 24% 19%8%56% 21% 23%0%54% 22% 18%6%

(b)

(c)

(a)

(i) (ii) (iii)

Figure 3. Illustration of the o–o–o task used in the study. (a) An example system of four categories. (b) Example instances from
the classes ‘chimney’ (i, ii) and ‘doctor’ (iii). (c) Histograms of the central quadrants of the images using the categories from (a) as
bins. In this particular case the distances between the histograms were computed as (i)–(ii)Z0.89, (i)–(iii)Z1.06 and (ii)–(iii)Z
0.80. So, the o–o–o is incorrectly guessed to be (i); the correct answer being (iii).
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‘glaucous’ categories then this useful inference would no
longer be so easily made.

The various sources of explanation are not mutually
exclusive. For example, categories could be tied to
opponent channels and yet could also be particularly
effective for classification. In such a case one could
speculate that the pressure to classify has worked
through evolution to shape the opponent channels, or
effective classification could simply be an epiphenome-
non to other evolutionary pressures. Disentangling
these possibilities and assessing whether they are
J. R. Soc. Interface (2006)
truly causative of the categories is likely to be difficult.
Easier to assess is whether the categories are consistent
or not with some possible explanation. For example, the
hypothesis that basic colours are particularly stable
under illuminant changes could be empirically assessed
while remaining neutral on whether it explains them.
We adopt this same neutral attitude when, in this
paper, we investigate if the basic colour categories are
particularly useful for classification: the most we can
expect to do is change the plausibility of explanation-
from-optimality.

http://rsif.royalsocietypublishing.org/
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1.3. Colour histograms in machine vision

The use of colour for content-indexing into a large
database of images was introduced by Swain & Ballard
(1991). They showed that using an image-similarity
measure based on the similarity of the histograms of
pixel colours, was robust, efficient and effective at
retrieving from a database pictures that agreed in
content with a query image. They concluded that
colour histograms are object representations that are
stable in the presence of occlusion and viewpoint
changes, and that they can differentiate among a
large number of objects.

Swain and Ballard used coarsely binned RGB
histograms with 64 bins defined by the cross product
of the two most-significant bits of each of the three
colour channels. The motivations given for using coarse
histograms are: less storage, faster indexing and helpful
towards making the histogram-similarity measure
accord well to human perception. This final point has
been taken up by other authors who have constructed
similarly coarse histograms, but defined on more
perceptually uniform colour spaces such as HSV
(Smith & Chang 1995), Luv (Sclaroff et al. 1997) and
CIE-Lab (Sclaroff et al. 1997). The general idea of using
these spaces is that, if histogram bins are such that all
the individual colours within each bin are perceptually
similar, then images whose colours differ in percep-
tually unimportant ways will automatically have
similar histograms. The alternative is to use colour
histograms with a fine binning structure and to
incorporate information about colour similarity into
the histogram comparison metric, but this is a far
slower and more complex computation, and requires
much more storage. More recently, several image-
retrieval systems have taken this use of perceptually
coherent colour histogram bins to the extreme of using
just 11 bins based on the basic colours (Gong et al. 1996;
Gagliardi & Schettini 1997; Ciocca & Schettini 1999;
Ingemar 2000). Unfortunately, the use of colour
histograms in these fulsome machine vision systems is
only one of many factors that contribute to the
computation of image similarity and so there is a lack
of assessment of whether the use of such basic colour
bins does actually improves retrieval performance
compared to the other binning strategies previously
used. The results reported in this paper can be regarded
as filling this absence.
1.4. Hypothesis tested in this paper

We hypothesize that the basic colours are optimal
colour categories for classification. We can make this
more precise as follows.

OH: the colours of common things of the same general
class are typically more similar than the colours of
common things of different class. This effect ismaximized
when colours are described using the basic colours.

OH contains vague terms, in particular ‘similar’ and
‘described’. These terms can either be made more
precise by relating them to a particular algorithm or by
appealing to some ideal algorithm that optimally
extracts useful information from colour signals. In this
J. R. Soc. Interface (2006)
paper, we follow the former course by testing OH for a
particular algorithm that we implement in a machine
vision setting. We claim that the particular algorithm
used makes good use of colour data, but we make no
claim to its optimality, nor to its similarity with the
comparable algorithm used in human vision.
2. METHODS

To test OH we used the following task: given
descriptions of the colours of three things, two of
which are instances of the same class (for example two
fishes) while the third is something else (for example a
tree), decide which two of the descriptions are most
similar, and so identify the remainder as the odd-one-
out (o–o–o). OH predicts that the success rate at the
o–o–o task will be maximized for colour descriptions
based on the basic colours.

To test OH we need to decide on:

(i) a set of classes of thing,
(ii) a procedure for obtaining instances of each class,
(iii) a method of forming (relative to a system of

colour categories) colour-based descriptions of
instances and

(iv) a dissimilarity-measure on colour-based descrip-
tions.

We describe our approach to these in the following
sections.
2.1. Preparation of data

The OH specifies that the hypothesized optimality of
the basic colours is particularly for the commonly
encountered contents of the world. So, in an attempt to
focus on common classes of thing, we used the 758
nouns (see appendix A) from a children’s vocabulary
book (Amery 1997; e.g. ‘acrobats’, ‘baby’, ‘cabbage’,
etc.) as our classes.

As instances of our classes, we collected images using
the web-based search engine ‘Google Image’ in response
to a query using one of the class nouns (see figure 2).
The searches used modifiers that specified that only
colour jpeg-format images should be returned; this
mostly eliminates results, which are web-page graphics
(which are typically in .gif format) rather than images.
After eliminating duplicates (approximately 1%) we
used the first 80 images returned for each search. For
convenience we used the thumbnail images that Google
displays in its results page as our instances, rather than
the indexed images themselves. These thumbnails
varied in size between 602 and 1402. Figure 2a shows
typical results from a search.

For each instance, we computed and stored the RGB
histogram of the central quadrant of the image. The
logic of using only the central quadrant of each image
was that, on average, the fraction of pixels closely
related to the search term would be greater there than
in the entire image. The RGB histograms were
computed relative to a coarse 43 quantization of
RGB; figure 2b,c illustrates the process.

http://rsif.royalsocietypublishing.org/
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For the purposes of statistical analysis, the class-
defining nouns were randomly divided into two sets—A
and B—each of 379 nouns; and each set of 80 instances
was randomly divided into two sets—1 and 2—each of
40 images. Thus, we had four datasets: A1, A2, B1 and
B2. How we make use of four smaller datasets rather
than a single large one is described in detail later, but in
brief they allow calculation of statistical measures that
are not biased by over-fitting, they allow computation
of confidence limits for our results, and they allow us to
assess whether the number of instances we have per
class is sufficient.
2.2. Systems of categories considered

The systems of categories that we considered were the
partitions, compatible with a 43 quantization, of the
RGB cube into two or more convex (Kim & Rosenfeld
1982) categories. The definition of convexity that we
use is as follows: a path is any sequence of cells, with
consecutive cells adjacent in a 26 neighbour sense. A
line is a shortest path between its endpoints. A set of
cells is convex if and only if every pair of cells in the set
can be connected by a line entirely in the set.
2.3. Testing a system of categories

The first step in testing a system of categories was to
compute category-based colour descriptions for all
instances. These colour descriptions were simply the
histograms using categories (i.e. collections of one or
more cells) as bins rather than individual cells. Such
histograms are easily computed from the stored 64-bin
histograms by totalling the weights of cells belonging to
the same category.

The next step was to subject all weights, of all
category-based histograms, to a square-root transform-
ation. This commonly used procedure in histogram
processing makes the distribution (across histograms)
of the weights associated with any particular bin less
skewed, more normally distributed and so better
behaved (Aherne et al. 1997). The final step was to
whiten the square-rootedhistograms so that the variance
of the weights for different categories all equal unity. To
achieve whitening, for each category we subtracted the
mean and divided by the standard deviation of the
distribution (across all histograms) of the square-rooted
category-bin weights. We then treated each whitened
square-rooted histogram as a point in n-dimensional
space (where n is the number of categories) and used
Euclidean distance as a measure of dissimilarity.

We used a Monte Carlo method (Manly 1997) to
compute an o–o–o score for a category system. In each
trial, two instances (i and ii) from one class and a third
(iii) from a different class were randomly chosen. The
three pair-wise dissimilarities (i–ii, i–iii, ii–iii) between
the corresponding category-based histograms were
calculated as above. The guessed o–o–o was the instance
not involved in the smallest dissimilarity. When the
guessed o–o–o was the instance which alone in the trial
was from its class, the trialwas rated a success, otherwise
a failure (figure 3). Each o–o–o score was based on 106

trials, which resulted in a precision of G0.05%.
J. R. Soc. Interface (2006)
2.4. Defining a basic colour category system

To testOH we needed to identify a category system for
the 43 quantized RGB-cube that closely approximated
the partitioning of the colour solid into the basic colours.
This was a multi-step process that we now describe.

We made use of an assignment of colour names to
267 Munsell-coordinate-specified chips (Kelly & Judd
1976). We will illustrate the following stages using one
of these chips (5.3R, 5.9/3.5 labelled a ‘light greyish
red’) as an example. To assign the 267 chips to the basic
colours, we considered only the primary designator of
the associated colour name (‘red’ in the example).
Eleven ‘violet’ chips were classified as ‘purples’, and six
‘olives’ as ‘greens’. The Munsell coordinates of the chips
were transformed into XYZ under illuminant
(CXYZZ 88:2; 90:0; 107:3h i) using the Munsell Com-
pany’s conversion software (v6.22); this gave
exampleXYZZ 32:0; 28:9; 29:0h i. Then, a von Kries
transform (von Kries 1902) was used to transform
to illuminant D65 (D65XYZZ 95:0; 100:0; 108:9h i);
this gave exampleXYZZ 34:5; 32:1; 29:5h i. Then,
CIE-Lab coordinates were computed; this gave
exampleLabZ 63:4; 14:4; 7:6h i. We then computed the
convex hull (Chazelle 1993) of each of the 11 subsets of
points to identify the CIE-Lab extents of the basic
colours (figure 4a).

We then turned the colour extents in CIE-Lab space
into data expressed over a uniform323 sampling ofRGB.
This was done by transforming each of the 323 RGB
triples into CIE-Lab space by assuming a monitor
gamma of 2.4 and standard phosphor chromaticities
(ITU 1990); and for each transformed triple detecting
which, if any, of the basic colour extents it laywithin. If it
did lie within one, then the RGB triple got the
correspondingbasic-colour label, if not itwasunlabelled.
We then settled the unlabelled RGB triples by finding
the closest basic-colour extent to the CIE-Lab image of
the triple. Distance for this purpose was computed using
the CIE94 colour metric (Griffin & Sepehri 2002). The
result was a fully labelled cube as shown in figure 4b
(right),c. Although, as we have explained, we mapped
RGB grid points in CIE-Lab, not vice versa, for
completeness we note that the example colour that we
were following through the sequence of transformations
ends up at exampleRGBZ 184; 144; 141h i.

The final step of our procedurewas to consider the 512
basic-colour-labelled RGB-triples that corresponded to
each cell of the 43 quantization. We could have simply
seen which of the basic colours had the largest volume
fraction for any given cell, but this would have produced
an answer that corresponded poorly with expectation.
Consider, for example, the cell R;G;B2 0;63½ �, which is
the one that we expected to receive the label ‘black’.
Although this cell contained 77 of the 78 RGB-triples
that received the ‘black’ label, they accounted for only
15% of the cell’s volume; whereas the largest volume
fraction was 34% for ‘green’ RGB-triples. Hence, with
the volume-fraction approach, no cell would have been
labelled ‘black’. So, instead of using raw volume-
fractions, we computed the fraction of pixels of each
label type that fell within the cell. Where the pixels
considered were from the totality of all 60 640 images in

http://rsif.royalsocietypublishing.org/
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O

Figure 4. The stages in our mapping of the basic colours into
RGB: (a) CIE-Lab space with regions of definite colour label
(11 coloured polyhedra) and the edges of the monitor-typical
RGB cube (grey). The orientation is similar to figure 1. (b)
Both panels show the same slice through a 323 quantization of
RGB with the basic colour extents from (a) mapped into it; in
the right panel, the labels have been extended to all sites. (c)
A perspective view of the completely labelled RGB cube in
(b). The orientation is similar to (a), and the dotted line shows
the position of the slice in (b). (d ) Below the line is O, the
basic-colour category system we have defined, above the line
is shown the same schematic of RGB as used for orientation in
figures 2c and 3a. In the diagram of O, and in diagrams of
other category systems in other figures, we colour the
categories with the average RGB value of pixels (from the
full set of instances) that fall within them.
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our study. So in the case of the cell discussed, 59% of
image pixels that have RGB values within this cell were
labelled ‘black’, 2% were ‘red’, 13% ‘green’, 6% ‘blue’,
8% ‘purple’ and 12% ‘brown’. We labelled cells with the
most common label that occurred within them, so the
cell discussed was labelled ‘black’ as per expectation.
The results of this procedure are shown in figure 4d. We
will refer to this basic-colour category system asO. Each
of the categories of O is convex, though this was not
enforced in its construction.
2.5. Finding optimal category systems

We wished to find the category systems that maximize
the o–o–o score. The Monte Carlo method of estimating
o–o–o scores is, however, ill-suited to finding highest-
scoring category systems because its imprecision can be
larger than the score difference between partitions that
are being pair-wise compared. Instead we used a faster,
but approximate, method of scoring based on measures
of within- and between-class dispersion. The
approximate scores were given by:

scoreðnrÞZ r

ð
w2RC

c2
nðr$wÞ

ð
b2½w;N�

c2
nðbÞ

� �2� �
;

wherenwas thenumber of categories,c2
n is theprobability

density function of a chi-squared distribution of n degrees
of freedom, r was the ratio between the within- and
J. R. Soc. Interface (2006)
between-class root-mean-squared dissimilarities, and w
and b are integration variables that range across different
distances between histograms. We will refer to scores so
calculated as equational, to distinguish them fromMonte
Carlo scores.

The equation was derived on the assumption that
the histogram n-tuples of each class and of the entire set
were each distributed like isotropic n-dimensional
normal distributions. The square rooting and whitening
that was done on raw histograms gave this assumption
some grounds. A comparison study of the equational
and Monte Carlo scores found a strong linear relation-
ship (correlation coefficient, r2Z0.76) between the two,
for category systems of a given size. However, it was
found that the regression parameters of the relationship
varied with the number of categories, so use of
equational scores was restricted to comparisons
between systems of the same number of categories.
We used equational scoring on dataset A1 to find the
highest-scoring category system of a given size. In each
case we started with a random category-system of the
correct size and iteratively made changes to it, a single
cell at a time. The change at each step was randomly
chosen from the changes that (i) kept the number of
categories constant, (ii) preserved category-convexity
and (iii) improved the equational score. The process
terminated when no valid change was possible. For each
category size we repeated the optimization several
times using a different random starting category system
so that we could assess whether we were achieving
convergence. From the systems that resulted from the
multiple optimizations, the one that had the highest
equational score was chosen. This system then had its
Monte Carlo score assessed on datasets A2, B1 and B2.
Our use of different datasets for optimization and final
evaluation was important as it prevented spuriously
high scores due to over-fitting.
2.6. Computations carried out

The main computations that we carried out were to
calculate o–o–o scores for random category systems, to
find and score optimal category systems and to score
the basic-colour system O.
3. RESULTS

Figure 5 shows our results for random, optimal and the
basic-colour systems of categories. We discuss these
following the figure.
3.1. Random system scores

In figure 5, the grey line surrounded by the pale green
band shows the mean and one sd of scatter of the o–o–o
scores of random category systems. The data for each
size of category system were based on 10 random sys-
tems each evaluated on the instance datasets B1, A2 and
B2. The results in figure 5 show that the mean o–o–o
score for random systems rose from the baseline pure
chance score of 33.3% for one category to a maximum of
36.6% for 20 categories, it then declined with further
increases in the number of categories, dropping to

http://rsif.royalsocietypublishing.org/
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number of
categories
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B

A

Figure 5. The main results of the study. The grey curve and surrounding pale green band show the mean score and one s.d. of
variation for random category systems of different sizes. The black error bar shows the 95% confidence interval for the o–o–o
score of a typical scoring 11-category partition (A) which is shown at the lower–right of the figure using the same format as figures
2a and 3d. The bright green curve shows the maximum likelihood estimates of the o–o–o scores of the optimal category-systems of
size from 2 to 19. The bright green error bar shows the 95% confidence interval for the best optimal category system found
(B) which is shown at the top-right of the figure. The red error bar is the 95% confidence interval for the basic-colour system O,
shown at the right of the figure.
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Figure 6. A comparison between system of categories that are
convex (black) and unrestricted (grey). The lower curves are
for random systems, the upper optimal.
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Figure 7. o–o–o scores for category systems derived from
rotating the basic colours. Zero rotation is just the system O.
For each angle of rotation, the three black dots show the
scores using the three test datasets A2, B1 and B2. The green
line connects the mean scores for each angle. The red symbol
shows the median and 95% CI for the position and o–o–o score
of the maximum of the mean score curve. The lowest scoring
‘rotated basic-colour’ system, which occurs at a rotation of
608, is shown and labelled R.
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36.1% for the unique partition of 64 categories. For all
sizes of system greater than one, the mean o–o–o score is
significantly greater than chance (p!0.0005).

In figure 5 we also include a typical random system of
11 categories which we refer to as A. The estimated
score for A is 36.5%, close to the average of 36.5% for
random 11-category systems.
3.2. Optimal system scores

To assess whether our computation of optimal category-
systems was achieving convergence we compared the
maximum equational-score achieved based on either five
or (a distinct) 10 optimizations. Finding no significant
difference between these we concluded that five optimi-
zations was sufficient; but even so the results in figure 5
are based on the highest equational scoring system of all
15 optimizations that we performed. The optimizations
J. R. Soc. Interface (2006)
used A1 but we then computedMonte Carlo scores based
on B1, A2 and B2; and it is the means of these scores that
are plotted in the figure as a bright green line.

For systems of only two categories the optimal score
was 35.5%, only slightly better than the mean random
score for two-category systems (35.2%). The optimal
score rises with the number of categories, peaking at
systems of 10 categories, and then falls; eventually
going down to the performance of the unique 64-
category system. The optimal ten-category system is
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denoted B and is shown in figure 5. The individual
scores for B were 37.6, 37.9 and 37.6%. Thus, its
maximum likelihood estimate is 37.7% with a 95%
confidence interval [37.3%,38.2%]. The score of B and
its confidence interval are shown in green in figure 5.
The confidence intervals for other optimal systems are
not shown but are of a similar size.
3.3. The basic-colour category system (O)

The o–o–o scores for the basic-colour system (O ) were
37.3, 37.7 and 37.4% for the three test datasets. This
gives a maximum likelihood estimate of 37.5% and a
95% confidence interval [37.0%,37.9%]. The score forO
is significantly (p!0.005) larger than the scores for
random systems of categories. A test of whether the
estimated scores for O and B are the same does not
reject the null hypothesis that they are (pz0.08).
3.4. Effect of dataset used

All our results are based on computing three o–o–o
scores (one for each of A2, B1 and B2) for each
category-system considered. By using three datasets
we get an estimate of the o–o–o scores averaged
across a wider population of datasets than we have,
and we get to bracket these estimates with confidence
limits. We have compared the three o–o–o scores for a
large number of category systems and find no
significant difference in the variation of o–o–o scores
that results from using different instances within the
same classes (B1 versus B2) compared to using
different classes (A2 versus B1, and A2 versus B2).
This suggests to us that the number of classes we
used, and the number of instances within those classes
were well matched.
4. CONTROL COMPUTATIONS

We describe in the following six subsections the
methods and results of control computations that we
performed.
4.1. Importance of classes

Our first control computation was a check whether it
was actually the grouping of instances into classes that
underlay the greater than chance (33.3%) o–o–o scores
we obtained, or simply some error in the design or
execution of the computation. This we did by randomly
shuffling the data so that instances were still in groups
of 80 but now unrelated to the search terms used to
index the classes. Using this shuffled data, the o–o–o
scores of the three partitions shown in figure 5 were:
B 33.3%, O 33.4%, A 33.3%. This confirmed the
importance of the grouping of instances into classes.
4.2. Optimization starting at O

The optimization method used starts with a random
category system. It is natural to wonder what will be
found if O is taken as the starting point instead. We
examined this by performing 15 optimizations starting
J. R. Soc. Interface (2006)
at O, and looking more closely at the best of these (P).
The estimated o–o–o score for P, when evaluated on
our test datasets, was 37.7% with a 95% confidence
interval [37.2%, 38.3%]. This is not significantly
different from either B (pz0.43) or O (pz0.06), and
thus nothing is lost by starting optimizations at random
systems. It is tempting to look in detail at the category
differences between O and P, but since P failed to
significantly improve on the score of O, any differences
can be attributed to over-enthusiastic fitting to the
dataset A1 used for optimization rather than a genuine
worthwhile tweaking of the structure of O.
4.3. Relaxing the category-convexity constraint

All of the results so far presented are for systems of
convex categories. More relaxed conditions on cat-
egories could be imposed, for instance that they be
connected but not necessarily convex. The most
extreme relaxation is that the categories are uncon-
strained, and we have repeated our computation using
such. The results in figure 6 show that it makes no
important difference.
4.4. Rotated basic colours

We wished to assess whether the fine detail of the
arrangement of the basic colours is important for their
performance on the o–o–o task, or just their general
layout. To this end we produced category systems that
were like the basic colours in layout but different in
detail. We did this by rotating the named Munsell
colours that were the basis of our determination of O
and then following the same steps as was done for O.
Rotation was about the achromatic axis and was
performed in the CIE-Lab space as its approximate
perceptual uniformity helps preserve the basic-colour
structure during rotation. We computed ‘rotated basic-
colour’ systems for angles of rotation from—1658 to
1808 in 158 degree steps. The o–o–o scores of these
systems were then evaluated.

Figure 7 shows the individual scores of the ‘rotated
basic-colour’ systems as black points. The green curve
is the maximum likelihood estimate (i.e. the mean of
the three scores). By eye measure the curve peaks at
close to 08 rotation and more weakly at 1808, and has
poorly defined minima around 608 andK1658. To make
this more precise we used a bootstrap re-sampling of the
data to estimate that, with 95% confidence, the curve
peaks in the interval [K908,08], as shown in red. The
figure also shows the ‘608-rotated basic-colour’ system,
designated R, which had the lowest score.
4.5. Natural versus manufactured classes

We next addressed the concern that our methods were
biased towards a high score for O because many of our
images were of manufactured items, and the choice of
colours of these may be influenced by the usage of the
basic colours by producers and consumers. In particu-
lar, there could be a tendency towards ‘focal colours’.

To assess this, we ordered the 758 class terms by the
degree to which they were natural or manufactured,
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and bisected the list into manufactured and natural
halves. The ordering (see appendix A) was based on
6600 binary judgements of relative naturalness between
random pairs of terms made by a group of 33 naı̈ve
subjects.

An impression of the order is conveyed by listing
every 20th term, starting at the natural end: shell, sky,
ostrich, milk, squirrel, snail, carrot, crocodile, winter,
tomato, sheepdog, reindeer, chef, wall, walking stick,
chips, chicken, bridge, signpost, gloves, axe, road,
dinner, hole, cricket, tape measure, knives, bedroom,
switch, railings, loft, forks, ghost train, car wash,
bicycle, umbrella, train set and tablecloth.

We would expect that if the o–o–o performance of O
was enhanced by a manufactured-item focal-colour
bias, then its o–o–o score using just manufactured
classes would be higher than using just natural classes.
This hypothesis was not supported. The Monte Carlo
score for O, using just the 50% of classes at the natural
end of the spectrum, was 37.5%, and using just the
manufactured classes was 37.2%.
4.6. Photographs versus pictures

The database of images used included many that would
be better characterized as pictures than as photo-
graphs. These pictures, having been produced by
human artists, may bear a trace of the cognitive colour
categories of those artists e.g. categorically indistinct
colours such as yellow–green might subconsciously be
avoided. The presence of these cognitive traces could
bias our results towards a high score for O. To assess
this we identified the image in each class which most
contributed to the score of O being higher than for
random category systems. If the picture-bias hypoth-
esis is correct then we would expect that these instances
would contain an excessive number of pictures. The
fraction of pictures was assessed by two subjects,
unaware of the purpose of the experiment. They rated
that, of the full database of images, the fraction of
pictures was 19.4% and 31.2%, the difference in the
fractions reflecting different attitudes to difficult cases
such as photographs of painted shop signs. Of the
images most positively contributing to the performance
of O the fractions of pictures were 17.7% and 31.9%,
respectively. The fractions were not significantly
different for either subject, which argues against the
presence of pictures being an explanation of the
performance of O.
5. DISCUSSION

The results of our study are consistent with the
hypothesis OH. First, the o–o–o scores for random
category-systems were significantly better than chance,
demonstrating that colour is a useable cue for
classification. This is consistent with studies showing
the benefit of colour for object recognition (Ostergaard
& Davidoff 1985; Wurm et al. 1993; Tanaka et al. 2001).
Second, a basic-colour system of categories performed
significantly better than random systems, demonstrat-
ing that (i) not all systems of categories are equally
effective for classification and (ii) that a basic-colour
J. R. Soc. Interface (2006)
system is one of the better ones. Third, we showed that
we could not find any system of categories significantly
better than the basic-colour system, which is consistent
with our hypothesis that the basic colours are optimal.
In the following sections, we tackle several aspects of
the results and methods that threaten to undermine our
conclusion.
5.1. Significant but small effects

Prior to our experiment there were several factors that
made it doubtful whether better-than-chance perform-
ance at the o–o–o task would be achieved at all. In
particular the highly variable nature of the images
returned by ‘Google Image’, the pollution of the data
with a substantial fraction of irrelevant images (for
example, the crocodile-wood image in figure 2a), the
absence of a foreground/background segmentation
step, and the complete discard of spatial information
all made the task difficult. However, the results of
figure 5 show that performance significantly better than
chance is achievable, though it must be stressed that
although significant the margin is very small. In fact,
the margin is so small that it is essential to rule out
various possible explanations for it, other than the
intended.

The class-shuffling control computation of §4.1,
eliminated the possibility that the performance of O
was due to an undiagnosed design flaw or bug in the
computation and so completely artefactual.

The second possibility was that performance was due
to a small subset of ‘easy’ classes. To assess this we
computed class-specific o–o–o scores for the system O.
These scores, shown in figure 8, indicate that although
there is a rightwards skew, it is mild; so the o–o–o score
of O is not in the main due to a small number of easy
classes.
5.2. What underlies differences in category
system performance?

To further understand how o–o–o scores are achieved,
we have looked at some particular classes in detail. In
figure 9 we show a selection of instances from the
‘lettuce’ class. This is a noteworthy class as (i) it is the
second best class for system O and (ii) it is the class
whose score increases the most between systems A and
O. Figure 9 also shows diagrams illustrating the
dispersion of lettuce instance-histograms for systems
O and A. These diagrams make it clear that the higher
score of O compared to A is because the histograms for
O significantly depart from the population mean along
a dimension corresponding to the ‘green’ category. The
prominence of pixels of various shades of green is
apparent in the instances shown in the figure, and of
course makes sense because lettuces are green. In
contrast, A has several categories covering the green
category of O, so in A the consistency of the lettuce
images is not captured. This is similar to the motivating
example in §1.2 concerning the usefulness for induction
of a ‘green’ category.

In figure 10, we compareB andO to understand how
they achieve similarly high o–o–o scores despite being
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Figure 8. Shows a histogram of class-specific o–o–o scores for the basic-colour systemO. The 10 highest-scoring classes are shown
at right (‘tomato’ is the best), the four lowest scoring at left (‘mirror’ is the worst).
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A: 41%
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Figure 9. At right are typical instances of the ‘lettuce’ class. At left are shown the mean (coloured dots) and 1 s.d. of scatter
(vertical line) of instance histograms for the class ‘lettuce’ when represented using the systemsA andO. Note that these are not
raw histograms, but square-rooted whitened histograms. The background horizontal lines show the means (red) and G1 s.d. of
variation (green) of the full population of instances. The colours of the dots are the same as in the category-system diagrams. The
percentages are the class-specific scores for ‘lettuce’ with A and O.
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so different. The figure shows data concerning two
classes: ‘swimming pool’, for whichBmost outperforms
O; and ‘raspberry’, for which O most outperforms B.
The better performance of B for ‘swimming pool’ is
explained by its bluish and light-bluish categories, both
of which are different from the population mean for this
class, whereasO only has a single bluish category which
is comparably deviant. For the ‘raspberry’ class, the
better performance of O is because B lacks a reddish
category and so fails to capture the similarity of these
instances as well as O. Together the ‘swimming pool’
and ‘raspberry’ examples illustrate that it is not a
simple matter of there being a system of categories that
is the best for all classes: best on average seems to be the
most that can be expected.

Figure 11 shows the ‘tomato’ class which is the best
class forO and the class for which the performance ofO
most outstrips that of R. The O system successfully
J. R. Soc. Interface (2006)
captures the fact that ‘tomato’ instances, although
various in colour, are all varieties of red. In the R
system, the red category of O has been dissected into
purplish-pink, purplish-brown and brown categories
and so the colour clustering of tomatoes is far less
apparent.
5.3. Issues concerning the use of web imagery

Our use of images rather than objects is unusual in
studies of human colour vision, but not unprecedented
(Hurlbert 1998; Griffin 1999). However, the use of a
database of imagery constructed by a search engine,
rather than manually constructed and labelled is
unprecedented. This raises the possibility that some
non-standard aspects of the images we have used
account for our results. We believe that the results in
§5.2 already defuse this objection by showing that
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categorization is based on colour in the intended
manner, but in this section we deal with a few issues
that merit direct address. These can be grouped into
issues surrounding image content, the relation between
the image and its content, and the image data itself.
J. R. Soc. Interface (2006)
The first image-content issue is that a substantial
fraction (we estimate 10%) of the images we use, have
contents that are not connected to the class term in a
direct way. For example, in figure 2 we see an image of
‘crocodile-wood’ returned for the ‘crocodile’ query and
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Figure 12. Shows slices through the RGB histogram for the full dataset. The left panels are for the histogram quantized to 323

bins (the same slice as in figure 4b). The right panels are for the top layer of the 43 quantization. In the top row, intensity codes
directly for histogram weight; in the bottom row, intensity codes for log weight.
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in figure 11 there is an image of a ‘tomato hornworm
moth’ for the ‘tomato’ query. Since, these erroneous
images are so unpredictable in their contents it is
difficult to see how they could advantage O. Similar
comments apply to the issue of images that do contain
directly class-related content, but not within the
central quadrant. The second image-content issue is
the possibility of a manufactured-good focal-colour
bias. In §4.5, we showed evidence that this is not an
issue. Informal scrutiny of the data suggests that any
tendency to manufacture in focal colours is offset by a
tendency to make products in diverse colours. The
difference we found between natural and manufactured
although small was consistent with the finding that
colour is more useful for the recognition of natural than
manufactured objects (Humphrey 1994).

Concerning the relation between the images and
their content, one issue is that the images used are
almost certainly non-veridical. The majority of them
will have been acquired using uncalibrated cameras,
with spectral sensitivities different from human, under
a range of illuminants. They may well then have been
manipulated to display well on a display device with
gamma and chromaticities different from what we
assume (§2.3) before being placed on the web. That this
is a potentially serious problem can be seen by
considering a population of images that were dramati-
cally non-veridical. Imagine, for instance, that the RGB
channels were permuted. This would undermine our
J. R. Soc. Interface (2006)
claim that our results support OH and instead we
would only be able to claim to have supported an
hypothesis about the colours of web images of common
things, rather than the colours of common things.
However, acting against the possibility of significant
non-veridicality is the fact that creators of web pages
will favour images that allow viewers to correctly
recognize their contents. A second issue on the relation-
ship between images and their contents is the presence
of pictures, as opposed to photographs, in the database.
The issue with pictures is better described as their
fictionality rather than their non-veridicality. As
manufactured fictions they undoubtedly bear traces of
the cognition of their creators. For example, painted
seas might be blue more often than real seas. The
control computation reported in §4.6 assessed whether
the presence of pictures could account for the superior
performance of the basic colour systemO, but found no
evidence to support this.

Concerning the image-data itself, is the issue that
widespread usage of compression algorithms may bias
images towards containing certain RGB values. Exam-
ining the RGB histograms at full 2563 quantization we
do see evidence of this. However, as figure 12 shows, at
the coarser quantization levels that we used these
effects are lost and without influence.

The final issue with our use of web imagery concerns
what is unknown about the operation of ‘Google
Image’. Google’s description of its operation is ‘Google
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analyses the text on the page adjacent to the image, the
image caption and dozens of other factors to determine
the image content. Google also uses sophisticated
algorithms to remove duplicates and ensure that the
highest quality images are presented first in your
results.’ This is the only non-proprietary information
available, so it is a possibility that some subtle and
unknown bias has been introduced. However, this
would also be the case with an image dataset
constructed manually.
5.4. Issues around the use of RGB

In our method we had to choose the fineness of RGB
quantizations used at two points. We choose 323 for
representing the basic colour category extents from the
named colour chip data, and 43 for representing category
systemswhose classification performancewe assessed. It
is the coarser of these two that is more plausibly the
source of some problems. The possibility is that,
although 43 allows a surprisingly good representation
of the Basic colour categories (see figure 4), we cannot
rule out that there is a category system that performs
better than the basic colours but that can only be
faithfully expressed at a quantization of 53 or higher.

Ignoring the slight non-veridicality of RGB
(mentioned in §5.3), and so treating it simply as an
alternative coordinate system for cone response space,
there is an issue as to whether the direction and lengths
of the RGB axes is influential on our results. This is a
real possibility, since the category systems assessed
were based on a regular subdivision based on the RGB
system, and so the surprisingly good representation of
the BCTs mentioned above could be due to the use of
RGB, and the RGB system could be somehow tainted
by the BCTs. However, against this concern it should
be noted that the RGB system is not contrived around
easy nameability of its axes (just as CMYK is also not).
Rather the constraints on its design are that (i) it is a
system for linear additive mixing of colour and (ii) its
gamut should coincide with the gamut of surface
colours as closely as possible. RGB succeeds in this
second aim very well, as the gamut of surface colours is
not far from being parallelepiped in form (Griffin 2001),
which is inevitable given the non-convexity of the
spectral locus (Koenderink & van Doorn 2003). So, in
fact RGB is quite a natural coordinate system, and this
may be why seven of the RGB cube’s vertices coincide
well with the foci of seven of the basic colours (black,
white, red, green, blue, yellow and purple).
6. CONCLUSION

The starting point for this study was the observation
that categorization of colour has both been studied as a
window into human cognition, and has been used purely
pragmatically by engineers building image-retrieval
systems. This suggested the hypothesis that the best
system of categories for pragmatic purposes coincides
with human categories. We tested this hypothesis using
a classification task and obtained results consistent
with it. The strongest interpretation of our results is
that they support an explanation from visual ecology
J. R. Soc. Interface (2006)
for why humans use the colour categories that they do.
However, because (i) our experimental method assessed
the usefulness of colour categories when classifying
image contents into noun-categories and (ii) noun-
categories are human cultural-cognitive constructs, any
ecological explanation that is supported would not be of
a simple colour-clusters-present-in-the-environment
type, rather it would have to be a far more complex
beast dealing with the phenomenon of categorization in
general. The first step in this grander project of
explanation may already have been taken with the
startlingly simple suggestion that ‘good categories are
those that support induction’ (Ellison 2001).

However, we reject this strongest interpretation of
our results for three reasons. First, our method tested
the optimality hypothesis only for a particular machine
vision algorithm, not for the unknown algorithm of
human vision. Second, our method was only able to
reveal a very weak advantage for the basic colours.
Third, our experiment has absolutely nothing to say
about any causal linkage between this advantage and
humans having the basic colour categories; and causal
linkage is required for explanation. Rather we feel that
the most that can be concluded from this work is (i) the
plausibility of an explanation of the basic colours as the
result of a pressure-to-optimally classify is increased
and (ii) the basic colours are good categories to use for
classification in machine vision.
APPENDIX A

Here, we list the 758 nouns used as search terms. The
terms are listed in the natural-to-manufactured order
determined by the 6600 binary judgements of natural
versus manufactured made between pairs of nouns. The
precise ordering was not used in the reported research,
only the segregation into a natural and a manufactured
set.
A.1. The natural set

Shell, path, plant, cat, goat, kitten, lake, rocks, cliff,
dew, bird’s nest, cabbage, fog, island, mushroom, seeds,
eagle, flowers, mist, night, sky, spider, star, tree,
caterpillar, fish, lion, man, mountain, river, tiger,
toad, worm, apricot, bone, bull, diamond, giraffe,
leaves, lizard, ostrich, peas, polar bear, pond, rainbow,
salt, sea, seaweed, summer, whale, autumn, baby, bush,
camel, crab, frost, hair, hedgehog, kangaroo, lightning,
milk, mole, moth, mouse, pebbles, snow, spinach,
stones, trees, zebra, bear, cow, donkey, ducks, eye,
forest, grapes, penguin, seaside, seasons, squirrel,
tadpole, wood, beach, beans, birds, butterfly, cherry,
clouds, cubs, ears, feathers, ladybird, monkey, mouth,
parrot, peach, pigeon, rice, seal, snail, strawberry,
apple, beehive, children, dolphin, elbow, farmer,
gorilla, grapefruit, guinea pig, hippopotamus, iceberg,
lemon, owl, rain, smoke, thumb, water, wolf, carrot,
face, fisherman, hay, lambs, paws, pelican, plum,
seagull, snake, tortoise, waves, weather, beaver, bison,
canary, chalk, cheek, chocolate, cockerel, crocodile,
ducklings, elephant, field, geese, hens, lettuce, melon,
nuts, panda, pepper, pineapple, pony, raspberry,
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rhinoceros, straw, stream, sun, vegetables, wing,
winter, badger, celery, chin, cucumber, dancers, deer,
families, girl, grass, hand, haystack, hill, horns, leek,
lips, pumpkin, shepherdess, shoulders, starfish, tomato,
tongue, waterfall, wind, banana, bat, beaker, boy, calf,
clementine, hamster, horse, light, logs, moon, mud,
neck, planet, shark, sheep, sheepdog, arm, box, cheese,
cobweb, cone, dog, duck, eggs, fried egg, frog, head,
hedge, honey, leopard, nails, people, potatoes, puppy,
rabbit, reindeer, sandwich, space, spring, sticks, tea,
wasp, bride, brush, budgerigar, cauliflower, fox, fruit,
knee, leg, toes, toilet paper, woman, artist, bucket, chef,
chicks, clothes, country, cream, farm, fireman, foot,
meat, onion, orchard, pets, pigs, plank, rope, soap,
sponge, stable, straw bales, tummy, wall, beads, candle,
circle, eyebrow, fence, fingers, flippers, flower bed,
garden, iron, omelette, pear, salad, sandpit, singers,
soup, sugar, supper, swans, walking stick, acrobats,
bottles, broom, drink, food, hoe, lamp, mat, oval,
plates, plough, rectangle, sauce, sawdust, tail, teeth,
towel, bonfire, bow, chips, cushion, fishing boat, home,
house, jam, kennel, mashed potatoes, masks, oar, pet,
plaster, ring, sailor, steps, stool, tightrope walker, ball,
butcher, canoe, chicken, cowshed, floor, fruit juice,
goldfish, nose, popcorn, rolls, rowing boat, rubbish,
school, shower, skirt, toast, tourists, trowel, village,
basket, bench, breakfast, bridge, cap, drawing, duster,
face paints, flour, ham, hot-air balloon, jars, paint,
pancakes, pegs, piglets, present, ruler, sandcastle,
scales, scarf, shapes, shavings, signpost, sink, spade,
square, string, teacher, train driver, trunk, waiter,
aquarium, ceiling, chair, crayons, crescent, crossing,
dress, dustpan, farmhouse and football.
A.2. The manufactured set

Globe, gloves, hammer, juggler, jumper, painter, park,
pen, picnic, pigsty, pole, rake, roller, roundabout,
saddle, shoes, target, waitress, yoghurt, alphabet,
arrows, axe, band, bath, bolts, boot, bowls, candy
floss, coat, comb, crutches, drums, fishing rod, hat, hot
chocolate, letters, marbles, market, paddle, paper,
policewoman, road, roof, rope ladder, saucepans,
shed, skipping rope, sport, toilet, balloon, bed, belt,
boat, bricks, cage, carrier bag, cart, chimney, coffee,
cupboard, curtain, dinner, duvet, greenhouse, ladder,
lunch, ribbon, rubber, sandals, signals, skip, tents,
whistle, barge, buttons, canal, cards, cooker, crisps,
door, glasses, hole, jeans, judo, kite, medicine, nurse,
petrol, pillow, playground, salami, teddy bear, tight-
rope, triangle, trousers, apron, barrel, bathroom, birth-
day cake, changing room, Christmas tree, cricket, cups,
deck chair, door handle, father Christmas, frying pan,
hoop, jacket, mirror, nappy, photographer, pilot, plat-
form, pockets, pudding, rifle range, scarecrow, shorts,
sunhat, swings, tape measure, teapot, teaspoons, tins,
tissues, tray, boots, calendar, clown, comic, cube, desk,
doctor, easel, fireworks, gate, hall, handkerchief, kettle,
kitchen, knives, living room, money, necklace, news-
paper, nightdress, party, pavement, pictures pizza,
postman, pyjamas, saw, shop, slippers, soldiers, tunnel,
vice, zip, barn, bedroom, bridegroom, button holes,
cardigan, crane, flats, fork, guitar, hotel, judge, lock,
J. R. Soc. Interface (2006)
pencil, pills, rocking horse, runway, sausage, screw-
driver, sheet, shoelace, spoons, switch, table, ther-
mometer, tights, tool box, waiting room, washbasin,
washing powder, watering can, window, badge, bonnet,
bulb, glue, hamburger, hen house, karate, map, mop,
pram, railings, sailing boat, shirt, ski pole, socks, stairs,
sumo wrestling, swimsuit, tie, trapeze, trolley, wheel,
books, buffers, dice, dustbin, flag, handbag, helter-
skelter, ice skates, loft, pipes, presents, puppets, ring
master, scissors, screws, ship, slide, sweatshirt, tea
towel, toothpaste, tractor, trailer, upstairs, windmill,
yacht, downstairs, drill, file, forks, jack-in-the-box,
matches, paint pot, paints, plane, safety net, spaghetti,
street, sweet, tennis, tiles, top hat, café, carpet, castle,
cinema, circus, dressing gown, fancy dress, ghost train,
helicopter, helmet, locker, money box, purse, racket,
robot, spaceship, table tennis, toothbrush, toyshop,
trainers, water–skier, wedding day, wheelchair, work-
shop, backpack, big dipper, camera, car wash, digger,
factory, hairdresser, jigsaw, lamp post, parachute,
radio, sandpaper, saucers, snowboarding, sofa, sprink-
ler, syringe, ticket machine, tricycle, vacuum cleaner,
wheelbarrow, airport, basketball, bicycle, big wheel,
bus, garage, gym, motor–boat, notebook, penknife,
sleigh, suitcase, swimming pool, television, toys, work-
bench, dodgems, fire engine, goods train, lawn mower,
racing car, roller blades, umbrella, video, wardrobe,
washing machine, cassette tape, checkout, dentist,
engine, fridge, headlights, key, oil tanker, photographs,
radiator, recorder, spacemen, tanker, tap, telephone,
train, train set, video camera, caravan, chairlift, chest
of drawers, dolls, drawer, ironing board, lift, piano,
spanner, taxi, tyre, van, ambulance, american football,
badminton, birthday card, bus driver, carriages, table-
cloth, telescope, compact disc, railway station, trum-
pet, bow tie, control tower, doll’s house, fairground,
hospital, lighthouse, police car, lorry, rocket, battery,
submarine, railway track, traffic lights.
REFERENCES

Aherne, F. J., Thacker, N. A. & Rockett, P. I. 1997 The
Bhattacharyya metric as an absolute similarity measure
for frequency coded data. Kybernetika 32, 1–7.

Amery, H. 1997 First 1000 words sticker book. London:
Usborne Publishing Ltd.

Berlin, B. & Kay, P. 1969 Basic color terms: their universality
and evolution. Berkeley: University of California Press.

Brown, D. E. 1991 Human universals. New York: McGraw-
Hill.

Buchsbaum, G. & Bloch, O. 2002 Color categories revealed
by non-negative matrix factorization of Munsell color
spectra. Vis. Res. 42, 559–563. (doi:10.1016/S0042-
6989(01)00303-0)

Chazelle, B. 1993 An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geometry 10,
377–409.

Ciocca, G. & Schettini, R. 1999 A relevance feedback
mechanism for content-based image retrieval. Inf. Process.
Manag. 32, 1685–1695.

Davidoff, J., Davies, I. & Roberson, D. 1999 Colour categories
in a stone-age tribe. Nature 398, 203–204. (doi:10.1038/
18335)

Dowman, M. 2002 Modelling the acquisition of colour words,
in Al 2002. Adv. Artif. Intell., 259–271.

http://dx.doi.org/doi:10.1016/S0042-6989(01)00303-0
http://dx.doi.org/doi:10.1016/S0042-6989(01)00303-0
http://dx.doi.org/doi:10.1038/18335
http://dx.doi.org/doi:10.1038/18335
http://rsif.royalsocietypublishing.org/


Optimality of the basic colour categories L. D. Griffin 85

 rsif.royalsocietypublishing.orgDownloaded from 
D’Zmura, M. & Knoblauch, K. 1998 Spectral bandwidths for
the detection of color. Vis. Res. 38, 3117–3128. (doi:10.
1016/S0042-6989(97)00381-7)

Ellison, T. M. 2001 Induction and inherent similarity. In
Similarity and categorization (ed. U. Hahn & M. Ramscar),
pp. 29–49. Oxford: OUP.

Gagliardi, I. & Schettini, R. 1997 A method for the automatic
indexing of colour images for effective image retrieval.
N. Rev. Hypermedia Multimedia 3, 201–224.

Gärdenfors, P. 2000 Conceptual spaces: the geometry of
thought. Cambridge, MA: MIT Press.

Gibson, J. J. 1979 The ecological approach to visual
perception. Boston: Houghton Mifflin.

Gong, Y. H., Chuan, C. H. & Guo, X. Y. 1996 Image indexing
and retrieval based on color histograms. Multimedia Tools
Appl. 2, 133–156.

Griffin, L. D. 1999 Partitive mixing of images: a tool for
investigating pictorial perception. J. Opt. Soc. Am. A 16,
2825–2835.

Griffin, L. D. 2001 Similarity of pyschological and physical
colour space shown by symmetry analysis. Color Res.
Appl. 26, 151–157. (doi:10.1002/1520-6378(200104)26:2!
151::AID-COL1006O3.0.CO;2-G)

Griffin, L. D. & Sepehri, A. 2002 Performance of CIE94 for
non-reference conditions. Color Res. Appl. 27, 108–115.
(doi:10.1002/col.10029)

Hering, E. 1920 Outlines of a theory of the light sense.
Harvard: Harvard University Press.

Humphrey, G. K. 1994 The role of surface information in
object recognition: studies of a visual form agnosic and
normal subjects. Perception 23, 1457–1481.

Hurlbert, A. 1998 Illusions and reality checking on the small
screen. Perception 27, 633–636.

Hurvich, L. M. & Jameson, D. 1957 An opponent-process
theory of color vision. Psychol. Rev. 64, 384–404.

Ingemar, J. C. et al. 2000 The Bayesian image retrieval
system, pichunter: theory, implementation, and psycho-
physical experiments. IEEE Trans. Image Process. 9,
20–37. (doi:10.1109/83.817596)

ITU 1990 Parameter values for the HDTV standards for
production and international programme exchange, ITU-R
BT.709-3. Geneva: International Telecommunications
Union.

Jameson, K. A. In press. Culture and cognition: what is
universal about color experience? J. Cogn. Culture.

Kay, P. 1999 Color. J. Linguistic Anthropol. 1, 29–32.
Kay, P. & Maffi, L. 1999 Color appearance and the emergence

and evolution of basic color lexicons. Am. Anthropol. 101,
743–760. (doi:10.1525/aa.1999.101.4.743)

Kay, P. & Regier, T. 2003 Resolving the question of color
naming universals. Proc. Natl Acad. Sci. USA 100,
9085–9089. (doi:10.1073/pnas.1532837100)

Kay, P. et al. 2005 The World Color Survey. Center for the
Study of Language and Information.

Kelly, K. L. & Judd, D. B. 1976 Color: universal language and
dictionary of names. National Bureau of Standards 189.

Kim, C. E. & Rosenfeld, A. 1982 Digital straight lines and
convexity of digital regions. IEEE Trans. Pattern Anal.
Mach. Intell. 4, 149–153.

Koenderink, J. J. & van Doorn, A. J. 2003 Perspectives on
color space. In Colour perception: mind and the physical
world (ed. R. Mausfield & D. Heyer), pp. 1–56. Oxford:
Oxford University Press.

Kuehni, R. G. 2004 Variability in unique hue selection: a
surprising phenomenon. Color Res. Appl. 29, 158–162.
(doi:10.1002/col.10237)
J. R. Soc. Interface (2006)
Lin, H. et al. 2001 A cross-cultural colour-naming study. Part
I. Using an unconstrained method. Color Res. Appl. 26,
40–60. (doi:10.1002/1520-6378(200102)26:1!40::AID-
COL5O3.0.CO;2-X)

Lucy, J. A. 1997 The linguistics of color. InColor categories in
thought and language (ed. C. L. Hardin & L. Maffi),
pp. 320–346. Cambridge: Cambridge University Press.

Manly, B. F. J. 1997 Randomization, bootstrap and monte
carlo methods in biology. London: Chapman & Hall.

Ostergaard, A. L. & Davidoff, L. B. 1985 Some effects of
colour on naming and recognition of objects. J. Exp.
Psychol. 11, 579–587.

Paramei, G. V. 2005 Singing the Russian blues: an
argument for culturally basic color terms. Cross-Cult.
Res. 39, 10–38.

Riemann, A. 1854 On the hypotheses which lie at the
foundations of geometry. A Source Book of Mathematics.
New York: Dover.

Roberson, D. 2005 Color categories are culturally diverse in
cognition as well as in language. Cross-Cult. Res. 39,
56–71. (doi:10.1177/1069397104267890)

Roberson, D., Davies, I. & Davidoff, J. 2000 Color categories
are not universal: Replications and new evidence from a
stone-age culture. J. Exp. Psychol.-Gen. 129, 369–398.
(doi:10.1037//0096-3445.129.3.369)

Saunders, B. 2000 Revisiting basic color terms. J. R.
Anthropol. Inst. 6, 81–99.

Saunders, B. & van Brakel, J. 1997 Are there non-trivial
constraints on color categorization? Behav. Brain Sci. 20,
167–228. (doi:10.1017/S0140525X97531426)

Schirillo, J. 2001 Tutorial on the importance of color in
language and culture. Color Res. Appl. 26, 179–192.
(doi:10.1002/col.1016)

Sclaroff, S., Taycher, L. & La Cascia, M. 1997 Image-Rover: a
content-based image browser for the world wide web. In
Proc. IEEEWorkshop on Content-based Access Image and
Video Libraries, pp. 2–9. Los Alamitos: IEEE Computer
Press.

Smith, J. R. & Chang, S.-F. 1995 Single color extraction and
image query. Proc. ICIP, vol. 3, pp. 528–531. Los
Alamitos: IEEE Computer Press.

Steels, L. & Belpaeme, T. In press. Coordinating perceptually
grounded categories through language. A case study for
colour. Behav. Brain Sci.

Swain, M. J. & Ballard, D. H. 1991 Color indexing. Int.
J. Comput. Vis. 7, 11–32. (doi:10.1007/BF00130487)

Tanaka, J., Weiskopf, D. & Williams, P. 2001 The role of
color in high-level vision. Trends Cogn. Sci. 5, 211–215.
(doi:10.1016/S1364-6613(00)01626-0)

von Kries, J. 1902 Chromatic adaptation. In Sources of colour
vision (ed. D. L. MacAdam), pp. 109–119. Cambridge,
MA: MIT Press.

Webster, M. A. 2000 Variations in normal color vision. II.
Unique hues. J. Opt. Soc. Am. A 17, 1545–1555.

Webster, M. A. &Mollon, J. D. 1994 The influence of contrast
adaptation on color appearance. Vis. Res. 34, 1993–2020.
(doi:10.1016/0042-6989(94)90028-0)

Wurm, L. H. et al. 1993 Color improves object recognition
in normal and low vision. J. Exp. Psychol.: Hum.
Percept. Perform. 19, 899–911. (doi:10.1037//0096-1523.
19.4.899)

Yendrikhovskij, S. N. 2001 Computing color categories from
statistics of natural images. J. Imaging Sci. Technol. 45,
409–417.

http://dx.doi.org/doi:10.1016/S0042-6989(97)00381-7
http://dx.doi.org/doi:10.1016/S0042-6989(97)00381-7
http://dx.doi.org/doi:10.1002/1520-6378(200104)26%3A2%3C151%3A%3AAID-COL1006%3E3.0.CO%3B2-G
http://dx.doi.org/doi:10.1002/1520-6378(200104)26%3A2%3C151%3A%3AAID-COL1006%3E3.0.CO%3B2-G
http://dx.doi.org/doi:10.1002/col.10029
http://dx.doi.org/doi:10.1109/83.817596
http://dx.doi.org/doi:10.1525/aa.1999.101.4.743
http://dx.doi.org/doi:10.1073/pnas.1532837100
http://dx.doi.org/doi:10.1002/col.10237
http://dx.doi.org/doi:10.1002/1520-6378(200102)26%3A1%3C40%3A%3AAID-COL5%3E3.0.CO%3B2-X
http://dx.doi.org/doi:10.1002/1520-6378(200102)26%3A1%3C40%3A%3AAID-COL5%3E3.0.CO%3B2-X
http://dx.doi.org/doi:10.1177/1069397104267890
http://dx.doi.org/doi:10.1037//0096-3445.129.3.369
http://dx.doi.org/doi:10.1017/S0140525X97531426
http://dx.doi.org/doi:10.1002/col.1016
http://dx.doi.org/doi:10.1007/BF00130487
http://dx.doi.org/doi:10.1016/S1364-6613(00)01626-0
http://dx.doi.org/doi:10.1016/0042-6989(94)90028-0
http://dx.doi.org/doi:10.1037//0096-1523.19.4.899
http://dx.doi.org/doi:10.1037//0096-1523.19.4.899
http://rsif.royalsocietypublishing.org/

	Optimality of the basic colour categories for classification
	Introduction
	Nature of the basic colours
	Explanations of the basic colours
	Colour histograms in machine vision
	Hypothesis tested in this paper

	Methods
	Preparation of data
	Systems of categories considered
	Testing a system of categories
	Defining a basic colour category system
	Finding optimal category systems
	Computations carried out

	Results
	Random system scores
	Optimal system scores
	The basic-colour category system (O)
	Effect of dataset used

	Control computations
	Importance of classes
	Optimization starting at O
	Relaxing the category-convexity constraint
	Rotated basic colours
	Natural versus manufactured classes
	Photographs versus pictures

	Discussion
	Significant but small effects
	What underlies differences in category system performance?
	Issues concerning the use of web imagery
	Issues around the use of RGB

	Conclusion
	Appendix A
	The natural set
	The manufactured set

	References


